VOLUME CODING FOR BBA-BIOMEMBRANES

BBA is published according to a volume-numbering scheme that embraces all sections of the journal: for 1970 the scheme—covering the volumes 196–224—is to be found on the inside cover of this issue. The seven individual sections are distinguished by a colour code. In addition to the colour code each section is given its own sequential volume numbers. This system runs parallel to the overall BBA scheme: for the BIOMEMBRANES section the correspondence is indicated in the Table below. This issue is therefore BIOCHIMICA ET BIOPHYSICA ACTA, Vol. 211/3 or BBA—BIOMEMBRANES M9/3.

Parallel volume coding for BBA-Biomembranes

Biochimica et Biophysica Acta Volume No.	Biomembranes Volume No.	Biochimica et Biophysica Acta Volume No.	Biomembranes Volume No.
Vol. 135 = Vol. 150 = Vol. 163 = Vol. 173 = Vol. 183 = Vol. 193 =	Mr (1967) M2 (1968) M3 (1968) M4 (1969) M5 (1969) M6 (1969)	Vol. 196 = Vol. 203 = Vol. 211 = Vol. 219 =	M 7 (1970) M 8 (1970) M 9 (1970) M10 (1970)

A subscription to the biomembranes section of BBA for 1970 (4 volumes) is Dfl. 259.20. A supplementary charge for airmailing to U.S.A. and Canada is US \$ 1.50. Back volumes (according to their M numbers) are available: rates will be supplied on request.

ERRATA

BIOCHIMICA ET BIOPHYSICA ACTA, Vol. 203 (1970)

- p. 388, line 2: change " $V_{\mathbf{M}} = Q/Z$ " into " $V_{\mathbf{W}} = Q/Z$ ".
- p. 391, legend of Fig. 3: change " $D_{\rm M} \times$ 1.15" into " $D_{\rm M} =$ 1.15".
- p. 392, line 1: change "than species" into "than the normal species".
- p. 393, add "NOTE ADDED IN PROOF (Received April 6th, 1970)": SHORTMAN AND SELIGMAN¹⁹ have deftly exploited Donnan-osmotic equilibrium effects in their recent purification of erythroid cells by equilibrium centrifugation in albumin gradients.